
蔣恕,1976年12月生,男,湖北鄖西人。中國(guó)石油大學(xué)(北京)二級(jí)教授、博導(dǎo)。現(xiàn)任中國(guó)石油大學(xué)(北京)地球科學(xué)學(xué)院院長(zhǎng)和油氣資源與工程全國(guó)重點(diǎn)實(shí)驗(yàn)室副主任。先后在中海油研究總院、美國(guó)科羅拉多大學(xué)、美國(guó)猶他大學(xué)、中國(guó)地質(zhì)大學(xué)(武漢)、中國(guó)石油大學(xué)(北京)工作。入選2019年度國(guó)家級(jí)高層次人才、2018年度湖北省高層次人才和全球前2%頂尖科學(xué)家榜單。長(zhǎng)期從事石油地質(zhì)、陸相到深水盆地沉積層序及儲(chǔ)層預(yù)測(cè)、多能源盆地分析、非常規(guī)油氣(頁(yè)巖油氣、煤層氣、致密砂巖油氣)地質(zhì)工程一體化、油氣及伴生多能源資源(地?zé)?、氦氣、鹵水鋰)協(xié)同勘探開(kāi)發(fā)及利用、二氧化碳協(xié)同開(kāi)發(fā)油氣和地?zé)峒暗刭|(zhì)封存、沉積盆地儲(chǔ)能等研究。先后主持國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目、國(guó)家自然基金重點(diǎn)、海外合作和面上等項(xiàng)目、中國(guó)三大油公司及36個(gè)跨國(guó)石油公司及自然資源部的科技攻關(guān)和國(guó)際合作項(xiàng)目80余項(xiàng)。研究區(qū)域和領(lǐng)域包括中國(guó)、美國(guó)、非洲、澳大利亞、南美洲、地中海大西洋等地的陸相到深水隱蔽油氣藏和非常規(guī)油氣(頁(yè)巖油氣、煤層氣、致密砂巖油氣)和深層油氣及伴生地?zé)?、鋰、氦等新能源等。代表性成果包括?)提出了典型陸相到深水盆地的演化及層序地層格架內(nèi)濁積砂巖、烴源巖和非常規(guī)儲(chǔ)層的沉積模式,并成功用于勘探新領(lǐng)域預(yù)測(cè);2)揭示了常規(guī)油氣及非常規(guī)能源(頁(yè)巖油氣、致密油氣、煤層氣和地?zé)帷⒑猓﹥?chǔ)層的時(shí)空分布規(guī)律和儲(chǔ)層結(jié)構(gòu),開(kāi)發(fā)了二氧化碳、氮?dú)?、壓汞和核磁等結(jié)合的儲(chǔ)層表征技術(shù)和提出了非常規(guī)能源地質(zhì)工程一體化的甜點(diǎn)智能預(yù)測(cè)方法和合理的勘探開(kāi)發(fā)方案;3)開(kāi)展了地球深部過(guò)程與油氣和地?zé)?、氦、鋰等新能源資源形成、富集及多能源資源同盆共生關(guān)系和協(xié)同勘探開(kāi)發(fā)的研究;4)探索了二氧化碳協(xié)同開(kāi)發(fā)油氣和地?zé)峒疤挤獯嬉惑w化技術(shù)和沉積盆地儲(chǔ)能技術(shù)。研究成果在A(yíng)APG Bulletin、SPE Journal、Earth-Science Reviews、Energy、Sedimentary Geology、Energy Conversion and Management、Computers and Geotechnics、Geothermics、地球科學(xué)、石油學(xué)報(bào)、沉積學(xué)報(bào)等領(lǐng)域內(nèi)主流期刊上發(fā)表論文100余篇。多篇領(lǐng)域內(nèi)Top期刊論文獲得ESI全球前1%高被引論文。先后擔(dān)任Interpretation期刊董事會(huì)成員和常務(wù)副主編及Petroleum Science、地球科學(xué)等期刊副主編。科研成果獲湖北省技術(shù)發(fā)明一等獎(jiǎng)(R1)、教育部科技進(jìn)步二等獎(jiǎng)(R1)、北京市自然科學(xué)二等獎(jiǎng)(R3)等獎(jiǎng)勵(lì)。國(guó)家級(jí)一流本科課程負(fù)責(zé)人,教學(xué)成果獲中國(guó)石油教育一等獎(jiǎng)。指導(dǎo)研究生獲第六屆全國(guó)油氣地質(zhì)大賽獲特等獎(jiǎng)、第十四屆“挑戰(zhàn)杯”秦創(chuàng)原中國(guó)大學(xué)生創(chuàng)業(yè)計(jì)劃競(jìng)賽二等獎(jiǎng)和湖北省挑戰(zhàn)杯一等獎(jiǎng)。先后AAPG頁(yè)巖/致密油氣委員會(huì)理事委員、中國(guó)石油和化工自動(dòng)化應(yīng)用協(xié)會(huì)油氣藏智能評(píng)價(jià)與開(kāi)發(fā)分會(huì)執(zhí)行理事,國(guó)家地?zé)崮苤行奈瘑T、中國(guó)地質(zhì)學(xué)會(huì)非常規(guī)油氣地質(zhì)專(zhuān)委會(huì)委員。近年來(lái)組織、召集和主持了AAPG、IPTC、ARMA、國(guó)際油氣田勘探開(kāi)發(fā)會(huì)議、中國(guó)深部地?zé)嵴搲?、全?guó)青年地質(zhì)大會(huì)等很多國(guó)際和國(guó)內(nèi)學(xué)術(shù)會(huì)議。
E-mail:[email protected] 辦公電話(huà):010-89734902
研究領(lǐng)域
石油地質(zhì)
陸相到深水沉積儲(chǔ)層預(yù)測(cè)及表征
多能源盆地分析
常規(guī)和非常規(guī)油氣(頁(yè)巖油氣、煤層氣和致密砂巖油氣)資源評(píng)價(jià)
油氣和共伴生多能源資源(地?zé)?、氦氣、鹵水鋰)協(xié)同勘探開(kāi)發(fā)
二氧化碳地質(zhì)封存與利用及沉積盆地儲(chǔ)能
招生方向
(1)博士研究生、學(xué)術(shù)型碩士研究生
地質(zhì)資源與地質(zhì)工程:盆地分析與資源評(píng)價(jià),非常規(guī)油氣地質(zhì)工程,新能源地質(zhì)與勘探
(2)專(zhuān)業(yè)學(xué)位博士和碩士研究生
資源與環(huán)境領(lǐng)域全日制地質(zhì)工程方向:油氣勘探地質(zhì)工程、清潔能源勘探開(kāi)發(fā)與CO2處置地質(zhì)工程、油氣資源大數(shù)據(jù)與智能工程
資源與環(huán)境領(lǐng)域非全日制地質(zhì)工程方向:油氣勘探地質(zhì)工程、清潔能源勘探開(kāi)發(fā)與CO2處置地質(zhì)工程、油氣資源大數(shù)據(jù)與智能工程
教育經(jīng)歷
2005.6,中國(guó)地質(zhì)大學(xué)(武漢),博士, 礦產(chǎn)普查與勘探(石油地質(zhì))
2000.6,中國(guó)地質(zhì)大學(xué)(武漢),本科, 石油工程(油藏工程)
工作履歷
1. 2025.11-目前,中國(guó)石油大學(xué)(北京)地球科學(xué)學(xué)院,院長(zhǎng)、教授(二級(jí)),油氣資源與工程全國(guó)重點(diǎn)實(shí)驗(yàn)室副主任
2. 2023.11-2025.11,中國(guó)地質(zhì)大學(xué)(武漢)新能源學(xué)院院長(zhǎng),深層地?zé)岣患瘷C(jī)理與高效開(kāi)發(fā)全國(guó)重點(diǎn)實(shí)驗(yàn)室(中國(guó)地質(zhì)大學(xué)(武漢))主任
3. 2019.1-2025.11,中國(guó)地質(zhì)大學(xué)(武漢)資源學(xué)院,教授(二級(jí))、地質(zhì)資源與地質(zhì)工程學(xué)科首席、博導(dǎo)、教育部構(gòu)造與油氣資源重點(diǎn)實(shí)驗(yàn)室主任
4. 2010.2-2019.1,美國(guó)猶他大學(xué),先后擔(dān)任研究助理教授、研究副教授和研究教授
5. 2008.12-2010.2,美國(guó)科羅拉多大學(xué)地質(zhì)系, Research Associate和Research Scientist
6. 2006.12-2008.11,美國(guó)科羅拉多大學(xué)地質(zhì)系,博士后
7. 2005.6-2006.11,中國(guó)海洋石油研究中心(中海油研究總院),石油地質(zhì)工程師
主持的代表性項(xiàng)目:
1. 國(guó)家重點(diǎn)研發(fā)計(jì)劃,地質(zhì)資源精準(zhǔn)開(kāi)發(fā)風(fēng)險(xiǎn)預(yù)測(cè)的大數(shù)據(jù)智能分析技術(shù)及平臺(tái)建設(shè),項(xiàng)目負(fù)責(zé)人及首席科學(xué)家,項(xiàng)目編號(hào)2022YFF0801200,2022.12-2027.11
2. 復(fù)雜構(gòu)造帶常壓頁(yè)巖氣動(dòng)態(tài)賦存機(jī)理與可動(dòng)性研究,國(guó)家自然科學(xué)基金重點(diǎn)基金項(xiàng)目,國(guó)家自然科學(xué)基金委員會(huì),42130803,2022.01 - 2026.12
3. 不同巖相頁(yè)巖油與油頁(yè)巖儲(chǔ)層原位加熱增孔致裂機(jī)理與預(yù)測(cè),國(guó)家自然科學(xué)基金面上基金項(xiàng)目,國(guó)家自然科學(xué)基金委員會(huì),42072174,2021.01 - 2024.12
4. 全球下志留統(tǒng)富含有機(jī)質(zhì)頁(yè)巖成因及優(yōu)質(zhì)儲(chǔ)層分布規(guī)律研究,國(guó)家自然基金海外合作基金項(xiàng)目,41728004,2018.1-2019.12
5. 盆地深層地?zé)崤c伴生資源勘探開(kāi)發(fā)技術(shù),湖北省科技廳中央引導(dǎo)地方科技發(fā)展專(zhuān)項(xiàng),2025CSA020,2025.6-2027.6
6. 深部碳酸鹽巖熱儲(chǔ)有利靶區(qū)智能預(yù)測(cè)與評(píng)價(jià)-碳酸鹽巖有利熱儲(chǔ)智能預(yù)測(cè),30130255-25-FW2313-0002,2025.12-2026.12
7. 大吉致密砂巖氣藏高產(chǎn)富集主控因素研究技術(shù),NCCBM25087ZMQ03,2025.11-2026.11
8. 志丹-吳起-定邊地區(qū)長(zhǎng) 7 頁(yè)巖油地質(zhì)評(píng)價(jià)與甜點(diǎn)優(yōu)選, 2024.11-2025.11
9. 典型高溫地?zé)嵯到y(tǒng)精細(xì)表征與資源評(píng)價(jià),國(guó)家科技部深地重大專(zhuān)項(xiàng)子課題,2024ZD1003503,2024.11-2027.10
10. 鄂爾多斯盆地石樓西北區(qū)潛力評(píng)價(jià)及中西部多層系協(xié)同開(kāi)發(fā)方案, 2024.7.1-2025.6.31
11. 全球地?zé)嵝履茉纯碧介_(kāi)發(fā)有利區(qū)預(yù)測(cè)和利用技術(shù)研究,國(guó)際科技合作項(xiàng),2024EHA026,2024.9-2026.9
12. 杜84塊興VI組油層精細(xì)油藏描述與剩余油分布研究,LHYT-KTKFYJY-2023-JS,2023.11-2024.11
13. 遼中凹陷西斜坡重點(diǎn)區(qū)帶古近系沉積體系精細(xì)研究及巖性圈閉預(yù)測(cè), 2020.5-2021.12;
14. 地?zé)醿?chǔ)層取熱性能評(píng)價(jià)技術(shù)研究,CCL2023HNFN0258,2023.6-2024.6
15. 遼中凸起斜坡上砂巖熱儲(chǔ)精細(xì)描述, LHYT-KTKFYJY-2023-JS-2279, 2023.5-2024.5
16. 地?zé)崃黧w水化學(xué)和同位素、磷灰石裂變徑跡分析,33550000-23-FW2022-0005,2023.1-2023.12
17. 洼陷帶P-T儲(chǔ)層成巖演化與有利儲(chǔ)層成儲(chǔ)機(jī)制,30200018-22-ZC0613-0075,2022.9-2023.12
18. 大蘆湖油田西部沙三下有利相帶預(yù)測(cè)及沉積模式分析,30200004-22-ZC0613-0024,2022.11-2023.12
19. 深層頁(yè)巖氣甜點(diǎn)評(píng)價(jià)技術(shù)實(shí)驗(yàn)研究,31400032-22-ZC0613-0017,2002.6-2023.11
20. 冀中坳陷重點(diǎn)地區(qū)深層碎屑巖沉積儲(chǔ)層特征及優(yōu)質(zhì)儲(chǔ)層成因機(jī)制研究, HBYT-2022-JS-347,2022.9-2024.2
21. 淺海外陸架海底扇-水道重力流儲(chǔ)層非均質(zhì)性表征,國(guó)家自然基金重點(diǎn)聯(lián)合項(xiàng)目,U19B2007,2020.1-2023.12;
22. 美國(guó)丹佛、粉河盆地地質(zhì)油氣地質(zhì)特征研究,19HT00000804, 2019-2020;
23. 桂中地區(qū)中泥盆統(tǒng)-下石炭統(tǒng)頁(yè)巖氣有利區(qū)優(yōu)選,2020110016000261,2020.1.21-2021.12.3;
24. 川東南與美國(guó)常壓頁(yè)巖氣儲(chǔ)層對(duì)比及技術(shù)策略研究,34600000-19-ZC0607-0004,2019.12-2021.7;
25. 深層頁(yè)巖儲(chǔ)層非均質(zhì)性精細(xì)表征與甜點(diǎn)優(yōu)選,2020-30,87.55萬(wàn)元,2019.12-2021.12;
26. 典型高溫地?zé)豳Y源評(píng)價(jià)的技術(shù)體系及最新進(jìn)展,2019.10-2021.6
27. Deepwater sequence, seismic geomorphology and sedimentary systems for Alaminos Canyon, Gulf of Mexico (墨西哥灣Alaminos Canyon深水層序、地震地貌和沉積體系), 國(guó)際合作,2006-2008
28. Characteristics of Petroleum Geology and Conventional and Unconventional Exploration Potentials in Northwest Africa(西北非常規(guī)和非常規(guī)油氣石油地質(zhì)和勘探潛力),國(guó)際合作, 17HT00000055,2017.7-2018.7
29. Seismic characterization of deepwater reservoirs in Carnarvon basin, Northwestern Australia (澳大利亞西北大陸架Carnarvon盆地深水儲(chǔ)層地震表征),國(guó)際合作,2006-2007
30. 順北5號(hào)斷裂北段不同特征斷裂裂縫發(fā)育規(guī)律研究,Ky2019-s-028,2019.04-2020.04;
31. 鄂爾多斯盆地東緣致密砂巖儲(chǔ)層及可改造性評(píng)價(jià),F(xiàn)YJFWQTQT-17-115, 2017.12-2019.12;
32. China Shale Gas and Shale Oil Plays(中國(guó)頁(yè)巖油氣), 國(guó)際合作, 2012-2016
33. Shale Resource Potential assessment in Paraguay, Argentina, Uruguay, and Brazil (巴拉圭、阿根廷、烏拉圭和巴西頁(yè)巖油氣評(píng)價(jià)),國(guó)際合作,2015
34. South American Shale Phase2(南美洲頁(yè)巖階段2),國(guó)際合作,2015-2015
35. Characterization of Tight and Shale Plays in North America (北美致密及頁(yè)巖油氣),2012.1-2013.8
36. Geothermal subsurface Characterization(地?zé)醿?chǔ)層表征),2016-2017
37. Yunnan Geothermal Drilling(云南沉積盆地地?zé)徙@探潛力項(xiàng)目),2017
38. Stratigraphic Controls on Tight-gas Sandstone, Piceance Basin(皮耶斯盆地致密砂巖氣的地層控制因素研究), 2008-2010
39. 遼中凹陷層序地層與隱蔽圈閉預(yù)測(cè),2005-2006
40. 中國(guó)東部斷陷盆地層序地層模式,2003-2005
41. 南襄盆地泌陽(yáng)凹陷層序地層與隱蔽圈閉預(yù)測(cè),2000-2004
榮譽(yù)及獲獎(jiǎng):
1. 非常規(guī)油氣源-儲(chǔ)-井-縫協(xié)同調(diào)控增產(chǎn)關(guān)鍵技術(shù)及工業(yè)化應(yīng)用(R1),湖北省技術(shù)發(fā)明一等獎(jiǎng),2023F-028-1-012-009-R01,2023年度
2. 頁(yè)巖層系差異成儲(chǔ)機(jī)制與智能靶向油氣甜點(diǎn)預(yù)測(cè)技術(shù)(R1),教育部教育部高等學(xué)校科學(xué)研究?jī)?yōu)秀成果獎(jiǎng)科技進(jìn)步二等獎(jiǎng),2022-538-R01,2023.6.6
3. 頁(yè)巖納米孔隙結(jié)構(gòu)及流體賦存機(jī)制研究(R3),北京市自然科學(xué)二等獎(jiǎng),2021-Z05-2-05-R03,2022.11
4. 非常規(guī)油氣地質(zhì)與工程一體化虛擬仿真實(shí)驗(yàn)(R1),國(guó)家級(jí)一流本科課程,2023220317,教育部,2023.5
專(zhuān)業(yè)機(jī)構(gòu)任職及社會(huì)兼職服務(wù):
1. 2017-目前,Interpretation期刊董事會(huì)成員和常務(wù)副主編
2. 2023-目前,副主編,地球科學(xué)
3. 2012-目前, AAPG 頁(yè)巖油氣/致密油氣委員會(huì)理事委員;
4. 2021-目前,中國(guó)石油和化工自動(dòng)化應(yīng)用協(xié)會(huì)油氣藏智能評(píng)價(jià)與開(kāi)發(fā)分會(huì)執(zhí)行理事,國(guó)家地?zé)崮苤行奈瘑T、中國(guó)地質(zhì)學(xué)會(huì)非常規(guī)油氣地質(zhì)專(zhuān)委會(huì)委員
5. 2017, 《中國(guó)能源新戰(zhàn)略-頁(yè)巖氣出版工程》編輯委員會(huì)委員
6. 2020,中國(guó)深部地?zé)嵴搲?,秘?shū)長(zhǎng)
7. 2023.6.9-11,全國(guó)青年地質(zhì)大會(huì),組委會(huì)副主席及執(zhí)行委員會(huì)主席
8. 2023.9.20-22,油氣田勘探與開(kāi)發(fā)國(guó)際會(huì)議(IFEDC),組委會(huì)副主席
9. 2019,ARMA國(guó)家地?zé)釙?huì)議,大會(huì)共同主席
10. 2018,AAPG ACE年會(huì),專(zhuān)題主席及分會(huì)場(chǎng)主席
11. 2017-2020,美國(guó)猶他大學(xué)杰出學(xué)者和創(chuàng)新研究獎(jiǎng)勵(lì)委員會(huì)委員 (Distinguished Scholarly and Creative Research Awards and Committee Members, University of Utah);
12. 2017-2020, 美國(guó)猶他大學(xué)研究委員會(huì)委員(University Research Committee Member)
代表性第一和通訊作者文章
1. 基于Fisher判別的混積巖測(cè)井相定量表征及沉積模式分析-以渤海灣盆地大蘆湖油田為例,地球科學(xué),2026
2. Fine Characterization of Pore Structure to Study the Migration and Retention Behavior of Fracturing Fluids in Normal Pressure Shale Gas Reservoirs: A Case Study of Longmaxi Formation in the Pengshui Area. SPE Journal. 2026,31(01):375-98.
3. A damage constitutive model for brittle rock considering compaction effect and energy dissipation characteristics, Computers and Geotechnics, 2025, 188, p.107601.
4. Characterization of Reservoir Structures With Knowledge-Informed Neural Network, 2025, SPE Journal, 133943,pp.1-18.
5. 深層碎屑巖儲(chǔ)層特征及控儲(chǔ)因素分析: 以饒陽(yáng)凹陷楊武寨地區(qū)為例. 地球科學(xué),2025, 50(7), pp.2861-2874.
6. Organic matter enrichment in basin periphery: A case study of Wufeng-Longmaxi shale, Marcellus shale, and Ohio shale, 2024, Sedimentary Geology, 468, p.106668.
7. 基于聚類(lèi)統(tǒng)計(jì)的含氦天然氣分類(lèi)與成藏分析: 以四川盆地為例. 2025, 地球科學(xué), 50(6), pp.2179-2198.
8. Quaternary sedimentary evolution and source apportionment in the northwestern South China Sea: Evidence from geochemical and zircon U-Pb data. Quaternary Science Reviews, 2025, 364, p.109465.
9. Interpretable predictive modelling of outlet temperatures in Central Alberta's hydrothermal system using boosting-based ensemble learning incorporating Shapley Additive exPlanations approach. Energy, 2025, 318, p.134738.
10. Enrichment mechanisms of natural hydrogen and predictions for favorable exploration areas in China. Applied Geochemistry, 2025, 182, p.106316.
11. 川東南下志留統(tǒng)與 Appalachian 泥盆系典型常壓頁(yè)巖氣藏富集特征對(duì)比. 2023,地球科學(xué), 48(1), pp.77-91.
12. 渤海灣盆地遼東灣坳陷盆中隆起緩坡帶重力流沉積形態(tài)及其控制因素. 2022,石油與天然氣地質(zhì), 43(4), pp.823-832.
13. 中美常壓頁(yè)巖氣賦存狀態(tài)及其對(duì)可動(dòng)性與產(chǎn)量的影響——以彭水和阿巴拉契亞為例. 2022,油氣藏評(píng)價(jià)與開(kāi)發(fā).
14. The identification of normal to underpressured formations in the Southeastern Sichuan basin. Journal of Petroleum Science and Engineering, 2022,219, p.111085
15. Estimation of thermal conductivity of plutonic drill cuttings from their mineralogy: a case study for the FORGE Well 58–32, Milford, Utah. Geothermics, 2022,102, p.102407.
16. Characteristics of heterogeneous diagenesis and modification to physical properties of Upper Paleozoic tight gas reservoir in eastern Ordos Basin. Journal of Petroleum Science and Engineering, 2022,208, p.109243.
17. Reconstruction of the Cenozoic tectono-thermal history of the Dongpu Depression, Bohai Bay Basin, China: Constraints from apatite fission track and vitrinite reflectance data. Journal of Petroleum Science and Engineering, 2021,205, p.108809.
18. The uplift of Himalaya-Tibet Plateau and its impacts on basin evolution and hydrocarbon accumulation in Asia. Interpretation, 2021,9(3), pp.SFi-SFi.
19. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area, China. Marine and Petroleum Geology, 2021, 124, p.104809.
20. Structure, burial, and gas accumulation mechanisms of lower Silurian Longmaxi Formation shale gas reservoirs in the Sichuan Basin (China) and its periphery. AAPG Bulletin, 2021,105(12), pp.2425-2447.
21. Terrestrial heat flow and lithospheric thermal structure in the Chagan Depression of the Yingen‐Ejinaqi Basin, north central China. Basin Research. 2020
22. Cyclic late Katian through Hirnantian glacioeustasy and its control of the development of the organic-rich Wufeng and Longmaxi shales, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019,526, 96-109
23. Heterogeneity of reservoir quality and gas accumulation in tight sandstone reservoirs revealed by pore structure characterization and physical simulation. Fuel, 2019,253, 1300-1316
24. Mechanisms of shale gas adsorption: Evidence from thermodynamics and kinetics study of methane adsorption on shale. Chemical Engineering Journal, 2019, 361, 559-570
25. Fracture types in the lower Cambrian shale and their effect on shale gas accumulation, Upper Yangtze. Marine and Petroleum Geology, 2019,99, 282-291
26. 頁(yè)巖氣發(fā)展模式與啟示,華東理工大學(xué)出版社, 2017,ISBN:978-7-5628-5334-3
27. Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata, Bohai Bay Basin, E. China, Marine and Petroleum Geology, 2016, 69, 183-204
28. Sequence stratigraphy, sedimentary systems and Petroleum plays in a low-accommodation basin: middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China. Journal of Asian Earth Sciences, 2015,105, p.85-103 (SCI-WOS:000355051700006)
29. Hybrid plays of Upper Triassic Chang7 lacustrine source rock interval of Yanchang Formation, Ordos Basin, China: Journal of Petroleum Science and Engineering,2017,159,182-196
30. Multiple-stacked Hybrid Plays of lacustrine source rock intervals: Case studies from lacustrine basins in China: Petroleum Science, 2017, v. 14, p. 459-483
31. Enrichment Factors and Current Misunderstanding of Shale Oil and Gas: Case Study of Shales in U.S., Argentina and China. Journal of Earth Science, 2017,42 (7), 1083-1091
32. Reservoir quality, gas accumulation and completion quality assessment of Silurian Longmaxi marine shale gas play in the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 2017, 39, 203-215
33. Comparison of marine, transitional, and lacustrine shales: A case study from the Sichuan basin in china, Journal of Petroleum Science and Engineering, 2017, 150,334-347
34. Geologic Characteristics of Hydrocarbon-bearing Marine, Transitional and Lacustrine Shales in China, Journal of Asian Earth Sciences,2026, 115:404-418.
35. Geology, resource potentials, and properties of emerging and potential China shale gas and shale oil plays. Interpretation, 2015,3 (2): 1-13
36. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: A case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China: Fuel, 2018, 221, 196–205
37. Heat flow and thermal evolution of a passive continental margin from shelf to slope - A case study on the Pearl River Mouth Basin, northern South China Sea. Journal of Asian Earth Sciences, 2019,171, 88-102
38. Impacts of clay on pore structure, storage and percolation of tight sandstones from the Songliao Basin, China: Implications for genetic classification of tight sandstone reservoirs. Fuel , 2018,211, 390-404
39. Reconstruction the Cenozoic history of hydrocarbon fluids from rifting stage to passive continental margin stage in the Huizhou Sag, the Pearl River Mouth Basin, Geofluids, 2017,Article ID 4358985, 32p
40. Marine redox stratification during the early Cambrian (ca. 529‐509 Ma) and its control on the development of organic‐rich shales in Yangtze Platform. Geochemistry, Geophysics, Geosystems, 18, 2354-2369
41. Neotectonic evolution of the Tarim Basin Craton from Neogene to quaternary. International Geology Review,207,1-18
42. 3D seismic stratigraphy and evolution of upper Pleistocene deepwater depositional systems, Alaminos Canyon, Northwestern deep Gulf of Mexico. In Application of Seismic Geomorphology Principles and Continental Slope and Base-of-slope Systems: Case Studies from Seafloor and sub-seafloor Analogues. Edited by Brad Prather, Mark Deptuck and David Mohrig etc, SEPM special publication No.99, 2012, p.309-327
43. Sequence stratigraphic architectures and sandbody distribution in Cenozoic rifted lacustrine basins, East China. 2013, AAPG Bulletin, v. 97 no. 9 p. 1447-1475.
44. 頁(yè)巖油氣富集的主控因素及誤辯: 以美國(guó), 阿根廷和中國(guó)典型頁(yè)巖為例. 地球科學(xué), 2017,42(7), pp.1083-1091.
45. 深水沉積層序特點(diǎn)及構(gòu)成要素. 地球科學(xué): 中國(guó)地質(zhì)大學(xué)學(xué)報(bào), 2008, 33(6), pp.825-833.
46. 遼河坳陷遼中凹陷成巖作用與中深層孔隙演化。石油與天然氣地質(zhì).2007,28(3): 362-369
47. 蔣遼東灣地區(qū)孔隙演化的機(jī)理.地球科學(xué)-中國(guó)地質(zhì)大學(xué)學(xué)報(bào).2007,32(3):366-372
48. 遼東灣盆地遼中凹陷隱蔽油氣藏成藏模擬.石油實(shí)驗(yàn)地質(zhì).2007(5)
49. 中國(guó)東部第三紀(jì)陸相斷陷含油氣盆地沉積模式構(gòu)建.地球科學(xué).2003,28:1-7